If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-5x-19=0
a = 3; b = -5; c = -19;
Δ = b2-4ac
Δ = -52-4·3·(-19)
Δ = 253
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{253}}{2*3}=\frac{5-\sqrt{253}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{253}}{2*3}=\frac{5+\sqrt{253}}{6} $
| 0.04(y-5)+0.08y=0.02y-0.7 | | 12x-6x+5+4=-10x+5 | | x/8-|=1 | | 12x-6x+5+4=10x+7 | | 12x-6x+5+4=10x+5 | | 20/x+2=7 | | 7x+x+12=-13.4 | | 20-30x=10 | | F=23n+290 | | 0.45814977973=x/1.25 | | 13-49x2=-12 | | 3y-2(4y-5=10-5y | | -1+(2x-4)=5 | | 5×+9y=8. | | 5×+9y=8 | | 5(y-4)(2y+16)=168 | | 4m•12=144 | | x^2+4x-3=8 | | z^2-9z+4=0 | | z^2-9z=4 | | 1=3f+9 | | 5x-30=50-3x | | ?x?=312 | | 15+(-6x)-6x=45+8x+10x | | 12-(7t)=30+2t | | 9x+5=14x-3=25 | | (n-12)-15=15 | | x-68+x+24=180 | | Y=18-3.50x | | 12x+3=121 | | 9x+8=7x-34 | | 11.25=1.25a |